188 research outputs found

    Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models

    Full text link
    A computation scheme for solving elliptic boundary value problems with axially symmetric confining potentials using different sets of one-parameter basis functions is presented. The efficiency of the proposed symbolic-numerical algorithms implemented in Maple is shown by examples of spheroidal quantum dot models, for which energy spectra and eigenfunctions versus the spheroid aspect ratio were calculated within the conventional effective mass approximation. Critical values of the aspect ratio, at which the discrete spectrum of models with finite-wall potentials is transformed into a continuous one in strong dimensional quantization regime, were revealed using the exact and adiabatic classifications.Comment: 6 figures, Submitted to Proc. of The 12th International Workshop on Computer Algebra in Scientific Computing (CASC 2010) Tsakhkadzor, Armenia, September 5 - 12, 201

    Nonrelativistic ionization energy for the helium ground state

    Full text link
    The helium ground state nonrelativistic energy with 24 significant digits is presented. The calculations are based on variational expansion with randomly chosen exponents. This data can be used as a benchmark for other approaches for many electron and/or three-body systems.Comment: 3 pages, 0 figure

    Relationship between the inexact Newton method and the continuous analogy of Newton's method

    Get PDF
    In this paper we propose two new strategies to determine the forcing terms that allow one to improve the efficiency and robustness of the inexact Newton method. The choices are based on the relationship between the inexact Newton method and the continuous analogy of Newton's method. With the new forcing terms, the inexact Newton method is locally QQ-superlinearly and quadratically convergent. Numerical results are presented to support the effectiveness of the new forcing terms

    Transfer ionization and its sensitivity to the ground-state wave function

    Full text link
    We present kinematically complete theoretical calculations and experiments for transfer ionization in H++^++He collisions at 630 keV/u. Experiment and theory are compared on the most detailed level of fully differential cross sections in the momentum space. This allows us to unambiguously identify contributions from the shake-off and two-step-2 mechanisms of the reaction. It is shown that the simultaneous electron transfer and ionization is highly sensitive to the quality of a trial initial-state wave function

    Effects of nonzero photon momentum in (\gamma,2e) processes

    Full text link
    We study the effects of nonzero photon momentum on the triply-differential cross section for (\gamma,2e) processes. Due to the low value of the photon momentum, these effects are weak and manifest only in special kinematical conditions like the back-to-back emission of the electrons with equal energy sharing. Helium and a few light helium-like ions are treated in detail. Quite unexpectedly, the magnitude of these effects is maximal for relatively small photon energies. However, although this effect on the TDCS remains rather small, of the order of a few mbarn eV^{-1} sr^{-2}, it is sufficient to be observed experimentally.Comment: 8 pages, 7 figures, 1 tabl

    Unusual chemical bond and spectrum of beryllium dimer in ground X1ÎŁg+X^1\Sigma_g^+ state

    Full text link
    This review outlines the main results which show the dual nature of the chemical bond in diatomic beryllium molecule in the ground X1ÎŁg+X^1\Sigma_g^+ state. It has been shown that the beryllium atoms are covalently bound at low-lying vibrational energy levels ({\nu}=0-4), while at higher ones ({\nu}=5-11) they are bound by van der Waals forces near the right turning points. High precision ab initio quantum calculations of Be2_2 resulted in the development of the modified expanded Morse oscillator potential function which contains all twelve vibrational energy levels [A.V. Mitin, Chem. Phys. Lett. 682, 30 (2017)]. The dual nature of chemical bond in Be2_2 is evidenced as a sharp corner on the attractive branch of the ground state potential curve. Moreover, it has been found that the Douglas-Kroll-Hess relativistic corrections also show a sharp corner when presented in dependence on the internuclear separation. The difference in energy between the extrapolated and calculated multi-reference configuration interaction energies in dependence on the internuclear separation also exhibits singular point in the same region. The other problems of ab initio quantum calculations of the beryllium dimer are also discussed. Calculated spectrum of vibrational-rotational bound states and new metastable states of the beryllium dimer in the ground state important for laser spectroscopy are presented. The vibration problem was solved for the modified expanded Morse oscillator potential function and for the potential function obtained with Slater-type orbitals [M. Lesiuk et al, Chem. Theory Comput. 15, 2470 (2019)]. The theoretical upper and lower estimates of the spectrum of vibrational-rotational bound states and the spectrum of rotational-vibrational metastable states with complex-valued energy eigenvalues and the scattering length in the beryllium dimer are presented
    • …
    corecore